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ABSTRACT
We present a dynamic programming based solution to a
stochastic reachability problem for a controlled discrete-time
stochastic hybrid system. A sum-multiplicative cost func-
tion is introduced along with a corresponding dynamic re-
cursion which quantifies the probability of hitting a target
set at some point during a finite time horizon, while avoiding
an obstacle set during each time step preceding the target
hitting time. In contrast with earlier works which consider
the reach and avoid sets as both deterministic and time in-
variant, we consider the avoid set to be both time-varying
and probabilistic. Optimal reach-avoid control policies are
derived as the solution to an optimal control problem via dy-
namic programming. A computational example motivated
by aircraft motion planning is provided.

Categories and Subject Descriptors
I.6.4 [Simulation and modeling]: Model Validation and
Analysis
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1. INTRODUCTION
Reachability analysis of deterministic dynamical systems

constitutes a practically important and intensely researched
area in control theory. Over the years, methods and nu-
merical tools for reachability of continuous time determin-
istic systems have been well researched (see [5, 17, 19, 28]
and the references therein). In particular, the reachability
problems considered are often solved via dynamic program-
ming [17,20]. Additionally, reachability problems for deter-
ministic hybrid systems and uncertain hybrid systems have
been addressed using computational methods based on dy-
namic programming [26] and nonsmooth analysis [13].

Stochastic Hybrid System (SHS) models have become a
common mechanism for the analysis and design of complex
systems given their ability to capture the variable tempo-
ral and spatial behavior often found in realistic systems.
In the continuous time setting, early contributions to SHS
theory include the works of [11, 14, 16], with [9] establish-
ing a theoretical foundation for the measurability of events
for reachability problems. Given that technical issues such
as measurability are easier to resolve in the discrete-time
setting, consideration of discrete-time stochastic hybrid sys-
tems (DTSHS) [4] has also attracted considerable attention.
Based on a theoretical foundation for the solution of stochas-
tic optimal control problems of general discrete-time sys-
tems of [7], probabilistic reachability of DTSHS has been
addressed in [2, 22,25].

In this paper we extend the recent results of [2,25] in the
area of probabilistic reachability of DTSHS. We consider a
probabilistic reach-avoid problem where the objective is to
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maximize or minimize the probability that a system starting
at a specific initial condition will hit a target set while avoid-
ing an unsafe set over a finite time horizon. However, in con-
trast with [2,25], we consider that the unsafe set (or obstacle
set) in the reach-avoid problem may be time-dependent and
random. In particular, that it can be accurately modeled by
a time-indexed sequence of random closed sets [18,21].

Following the methods of [2, 25], we formulate the reach-
avoid problem with random obstacles as a finite horizon
stochastic optimal control problem with a sum-multiplicative
cost-to-go function. Specifically, we consider two distinct
possibilities for the random set-valued obstacle process. In
the first, we consider the random set process to be an in-
dependent stochastic process, and thus decoupled from the
evolution of the DTSHS. In the second case, we consider the
obstacle process as a set-valued Markov process that can be
expressed through an appropriate parameterization. In both
cases, dynamic programming is used to compute the Mar-
kov control policy that maximizes or minimizes the cost of
the optimal control problem. A numerical example moti-
vated by aircraft motion planning under uncertain weather
predictions is provided.

The rest of the work is arranged as follows. In Section
2.1 we briefly recall the DTSHS model of [2]. In Section
2.2, we recall the basic theory of random closed sets and
define a set-valued stochastic process as a model for the dy-
namic obstacle set. In Section 3, we introduce the notion
of probabilistic reach-avoid over a finite time horizon with
dynamic and stochastic obstacle sets, and develop a mecha-
nism to determine optimal Markov control policies based on
dynamic programming. In Section 4 we provide a numerical
example.

2. MATHEMATICAL BACKGROUND
Here we recall the DTSHS model and associated semantics

introduced in [2] and aspects of the theory of random closed
sets [18,21].

2.1 DTSHS
Throughout, given a Borel set K, B(K) denotes the Borel
σ−algebra of K.

Definition 1. A discrete-time stochastic hybrid system,
H = (Q, n,A, Tv, Tq, R), comprises

• A discrete state space Q := {q1, q2, ..., qm}, for some
m ∈ N;

• A map n : Q → N which assigns to each discrete state
value q ∈ Q the dimension of the continuous state
space R

n(q). The hybrid state space is then given by
X :=

⋃
q∈Q{q} × R

n(q);

• A compact Borel space A representing the control space;

• A Borel-measurable stochastic kernel on R
n(·) given

X×A, Tv : B(Rn(·))×X×A → [0, 1], which assigns to
each x = (q, v) ∈ X and a ∈ A a probability measure
Tv(·|x, a) on the Borel space (Rn(q),B(Rn(q)));

• A discrete stochastic kernel on Q given X × A, Tq :
Q×X ×A → [0, 1], which assigns to each x ∈ X and
a ∈ A a probability distribution Tq(·|x, a) over Q;

• A Borel-measurable stochastic kernel on R
n(·) given

X × A × Q, R : B(Rn(·)) × X × A × Q → [0, 1],
which assigns to each x ∈ X, a ∈ A, and q′ ∈ Q
a probability measure R(·|x, a, q′) on the Borel space
(Rn(q′),B(Rn(q′))).

Consider the DTSHS evolving over the finite time horizon
k = 0, 1, . . . , N with N ∈ N. We specify the initial state as
x0 ∈ X at time k = 0, and define the notion of a Markov
policy.

Definition 2. A Markov Policy for a DTSHS, H, is a
sequence μ = (μ0, μ1, ..., μN−1) of universally measurable
maps μk : X → A, k = 0, 1, ..., N − 1. The set of all admis-
sible Markov policies is denoted by Mm.

Let τv : B(Rn(·))×X×A×Q → [0, 1] be a stochastic kernel
on R

n(·) given X × A × Q, which assigns to each x ∈ X,
a ∈ A, and q′ ∈ Q, a probability measure on the Borel
space (Rn(q′),B(Rn(q′))) given by

τv(dv′|(q, v), a, q′) =
{
Tv(dv′|(q, v), a), if q′ = q
R(dv′|(q, v), a, q′), if q′ �= q.

Based on τv we introduce the kernel Q : B(X) ×X × A →
[0, 1]:

Q(dx′|x, a) = τv(dv′|x, a, q′)Tq(q′|x, a).
Definition 3. Consider the DTSHS, H, and time hori-

zon N ∈ N. A stochastic process {xk, k = 0, ..., N} with
values in X is an execution of H associated with a Markov
policy μ ∈ Mm and an initial condition x0 ∈ X if and only
if its sample paths are obtained according to the DTSHS Al-
gorithm.

Algorithm 1 DTSHS Algorithm
Require: Sample Path {xk, k = 0, ..., N}
Ensure: Initial hybrid state x0 ∈ X at time k = 0, and

Markov control policy μ = (μ0, μ1, ..., μN−1) ∈Mm

1: while k < N do
2: Set ak = μk(xk)
3: Extract from X a value xk+1 according to Q(·|xk, ak)
4: Increment k
5: end while

Equivalently, the DTSHS H can be described as a Markov
control process with state space X, control space A, and
controlled transition probability function Q. Further, given
a specific control policy μ ∈ Mm and initial state x0 ∈ X,
the execution {xk, k = 0, ..., N} is a time inhomogeneous
stochastic process defined on the canonical sample space
Ω = XN+1, endowed with its product σ−algebra B(Ω). The
probability measure Pμx0 is uniquely defined by the transi-
tion kernel Q, the Markov policy μ ∈ Mm, and the ini-
tial condition x0 ∈ X (see [7]). From now on, we will use
interchangeably the notation Q(·|x, μk(x)) and Qμkx (·|x) to
represent the one-step transition kernel.

2.2 Random Sets
For the hybrid state space X one can select a metric d

such that (X, d) becomes a complete separable metric space
(see e.g. [11]). Let K denote the set of all closed subsets of
the hybrid state space X and let dH denote the Hausdorff
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Figure 1: A trajectory of forecasted and realized
weather obstacles over a 15 minute horizon according
to [12] for a section of airspace centered at latitude 30o
and longitude 86.5o, near the gulf coast of Florida, on
01/07/2009. The forecast storms are shown in dashed
lines. The horizon is shown with the labels t1 = 5 min-
utes, t2 = 10 minutes, and t3 = 15 minutes.

metric. It follows that (K, dH) is also a complete separable
metric space where the corresponding open subsets gener-
ate a σ-algebra on K [21], i.e. the Borel σ-algebra B(K)
corresponding to the Hausdorff metric of K.

Definition 4. A random closed set is a measurable func-
tion Ξ from a probability space (Ω,F , P ) into the measure
space (K,B(K)).

The distribution of a random closed set Ξ, is given by the
probabilities

P {Ξ ∩ F �= ∅}
for F ∈ K. For F = {x} ∈ X, the probability P {x ∈ Ξ} =
P {ω ∈ Ω : x ∈ Ξ(ω)} is obtained which satisfies the expres-
sion

P {x ∈ Ξ} = 1− P {x �∈ Ξ} .
We refer to the function pΞ(x) = P {x ∈ Ξ} as the covering
function. For some set K ⊆ X, let 1K(·) : X → {0, 1}
denote the indicator function. The covering function can
also be interpreted as the mean of the indicator function
1Ξ, i.e.

pΞ(x) = E [1Ξ(x)] .

Note that the covering function is a universally measurable
function [18] and takes values between 0 and 1.

We now define a stochastic set-valued process to be used
as a model for obstacle movement. For k = 0, 1, 2, . . . , N ,
let Gk be a Borel-measurable stochastic kernel on K given
K, Gk : B(K) × K → [0, 1], which assigns to each K ∈ K a
probability measure Gk(·|K) on the Borel space (K,B(K)).
That is, let Gk represent a collection of probability mea-
sures on (K,B(K)) parametrized by the elements of K and
indexed by time k. A discrete-time time-inhomogeneous set-
valued Markov process Ξ = (Ξk)k∈N0 taking values in the
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Figure 2: A trajectory of the random obstacles based
on forecast data is shown. The forecasted ellipses are
represented by dashed lines and the realization of the
random ellipses is represented as solid lines.

Borel space K is described by the stochastic kernel Gk. This
general model for the set-valued Markov process includes as
special cases time-homogeneous set-valued Markov processes
and independent distributions of random sets taking values
according to time-indexed random closed set stochastic ker-
nels.

In most cases the characterization of a stochastic set val-
ued process and the computation of associated functions
(e.g. the covering function) is difficult due to the size of
K. Yet, methods have been suggested in the literature that
alleviate the complexity of these processes and the related
functions [10,24]. For example, random closed set processes
are often characterized by families of closed subsets of K
which are parametrized by real parameters (referred to as
morphological transformations in [18]).

Definition 5. A parameterization of a discrete-time set-
valued Markov process Ξ is a discrete-time Markov process
ξ = (ξk)k∈N0 with parameter space O and transition probabil-
ity function Tk : B(O)×O → [0, 1] together with a function
γ : O → K such that

Ξ = (Ξk)k∈N0 = (γ(ξk))k∈N0 .

From now on we restrict our attention to parameterized
discrete-time set-valued Markov processes. Analysis of the
associated functions is often completed via Monte Carlo
methods. Consider the following example.

2.3 Example - Vertically Integrated Liquid
In aircraft path planning, the ability to identify and char-

acterize regions of hazardous weather is vitally important.
One factor that can be used to determine the safety of a
region of the airspace for an aircraft to fly through is the
Vertically Integrated Liquid (VIL) water content measure-
ment [3], which represents the level of precipitation in a
column of the airspace. This measurement has proven use-
ful in the detection of severe storms and short-term rainfall
forecasting [8], and hence can be used as an indicator for es-
tablishing a no-fly zone for aircraft: A region of the airspace
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Figure 3: An example covering function for the set-
valued Markov process of Section 2.2.

with a VIL measurement level above a certain threshold is
recommended as a no-fly zone for aircraft.

Regions with VIL levels above the safety threshold come
in numerous shapes and sizes. To simplify the expression
of these regions, one method of representation is to enclose
the no-fly region by minimum volume ellipsoids. Simplify-
ing the problem further, we consider a constant flight level
for the aircraft and consequently focus on ellipses in two
dimensions. Consider the forecast data at time instance
k, from which we obtain elliptical obstacles {E lk}, where
l = 1, 2, . . . , Lk, and Lk denotes the number of obstacles
at discrete time k. Each ellipse E lk is parameterized by its
center mlk ∈ R

2 and its positive definite eccentricity matrix
M lk:

x ∈ E lk(mlk,M lk) ⇐⇒ (x−mlk)TM lk(x−mlk) ≤ 1 (6)

For simplicity, in the sequel we assume that there exists
l = 1 elliptical no-fly region and denote the ellipse and its
representative parameters at time k by Ek, mk, and Mk.

Uncertainties associated with forecast data naturally ex-
ist, and become more prominent with the horizon length of
the forecast. For example, Figure 1 shows forecast storm
regions versus actual storm regions over a 15 minute hori-
zon at samples of 5 minutes. Figure 1 clearly illustrates
the effect that uncertainties can have on aircraft path plan-
ning. We account for these uncertainties by modeling the
hazardous regions (i.e. obstacles) as a sequence of random
closed sets whose distribution is determined from forecast
data and associated statistics. In this formulation, the sub-
sets of the airspace that are unsafe to fly through become
probabilistic.

As stated in Section 2.2, mathematically characterizing
the uncertainty in the forecast, and hence modeling the haz-
ardous regions as random closed sets, is difficult in general.
However, given the ellipse parameterization introduced in
(6), we can model the dynamic obstacles as random closed
sets by considering the parameters of the ellipse representa-
tion (e.g. the ellipse center) as random variables distributed
according to the forecast data. Assuming that the fore-
cast data is available in 5 minute increments and is given
in terms of the expected ellipse center mk and eccentricity
matrix Mk, we consider two mathematical formulations for

0.
2

0.20.2

0.2

0.2

0.
4

0.4

0.
4

0.4

0.
6

0.6

0.6 0.8

0.8

0.8

1

x
k+1

(km)

y k+
1(k

m
)

3640 3650 3660 3670 3680 3690 3700 3710 3720
765

770

775

780

785

790

795

800

Figure 4: Contour plot of the covering function shown
in Figure 3.

the model of the random sets. In the first, we consider that
the evolution of the ellipse centers is Markovian, and hence
the obstacle process is a set-valued Markov process (i.e. the
distribution of Ek+1 is a function of Ek). In the second, we
consider the distribution of the obstacle at time k + 1 to
be independent of Ek. In the current section we consider
the Markov model for the set-valued process, although both
special cases will be addressed in Sections 3 and 4.

Consider a storm region characterized by its minimum-
volume ellipse and let mk and mk+1 be the forecast center
of the ellipse at time k and time k+1 respectively. Then the
term μk ∈ R

2 defined as μk = mk+1−mk, for k ∈ N denotes
the incremental motion of the storm. Given that there are
uncertainties in the forecast, we assume that the true center
is a random variable whose motion is described as

ξk+1 = ξk + μk + ηk, (7)

where ηk ∼ N (0,Σ). In addition, we approximate the vari-
ation in the ellipse eccentricity according to the expression

Ck = R(θk)TMkR(θk), (8)

where Mk is the eccentricity obtained from the forecast at
time k, R(·) is a rotation matrix, and the angle of rotation
θk at time k is a random variable with uniform distribution
over an interval [−α, α]. Note that in this formulation only
the ellipse centers are Markov, although one could also con-
sider the angle of rotation to be Markov as well. The noise
parameters Σ and α are best determined from the quality
of the forecast and the rate of movement of the storms. A
trajectory of the forecast ellipses and a realization of the ran-
dom ellipses over a horizon of 15 minutes is shown in Figure
2. Based on the analysis of the storm movements [12], the
noise parameters were set to Σ = I2×2 and α = π

6 .
Given that the objective is to evaluate the safety of an air-

craft path with respect to hazardous weather, the covering
function for the random closed sets is of immediate interest.
That is, for an aircraft position xk ∈ R

2 at some time k, the
probability of being in the hazardous region Ξk = Ek(ξk, Ck)
is given by

P{xk ∈ Ξk} = P{(xk − ξk)TCk(xk − ξk) ≤ 1}.
Unfortunately, the calculation of the above probability is
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not analytically possible. For the case in which the eccen-
tricity of the ellipse is assumed to be deterministic, the above
probability obeys a Chi-squared distribution and can be ap-
proximated using statistical computational tools. For the
more general case, one can use Monte Carlo simulations to
approximate the probabilities of hitting an obstacle. For
example, consider the Markov set-valued obstacle process
introduced above with ξk = [3675 775]T , μk = [7.1 6.4]T ,
and Mk+1 = [0.0028 0; 0 0.0278]. The covering function
pΞk+1 (xk+1) at time k + 1 is approximated over the region
[3640 3720]× [765 800] using 105 Monte Carlo samples and
a 101 × 101 grid discretization. The result is displayed in
Figure 3 and Figure 4.

3. FINITE HORIZON REACH-AVOID
Let K,K′k ∈ B(X), with K ⊆ K′k for all k = 0, 1, . . . , N .

We define the stopping time associated with hitting K as
τ := inf{j ≥ 0|xj ∈ K}, and the stopping time associated
with hitting X \ K′k as τ ′ := inf{j ≥ 0|xj ∈ X \ K′j}; if a
set is empty we set its infimum equal to +∞. Our goal is to
evaluate the probability that the execution of the Markov
control process associated with the Markov policy μ ∈Mm

and the initial condition x0 will hit K before hitting X \
K′k during the time horizon N . We assume that the initial
avoid set Ξ0 = X \K′0 is known and Ξk = X \K′k for k =
1, . . . , N is an execution of the stochastic set-valued process
G. The probability that the system initialized at x0 ∈ X,
with control policy μ ∈ Mm and initial avoid set Ξ0 ∈ K,
reaches K while avoiding X \ K′k for all k = 0, 1, . . . , N is
given by

rμ(x0,Ξ0)(K) := Pμ(x0,Ξ0){∃j ∈ [0, N ] : xj ∈ K ∧
∀i ∈ [0, j − 1] xi ∈ K′i \K},

= Pμ(x0,Ξ0){{τ < τ ′} ∧ {τ ≤ N}},
where ∧ denotes the logical AND, and we operate under
the assumption that the requirement on i is automatically
satisfied when x0 ∈ K; subsequently we will use a similar
convention for products, i.e.

∏j
i=k (·) = 1 if k > j.

As in [25], consider
N∑
j=0

(
j−1∏
i=0

1K′
i
\K(xi)

)
1K(xj) =

{
1, if ∃j ∈ [0, N ] : xj ∈ K∧
∀i ∈ [0, j − 1] xi ∈ K′i \K

0, otherwise.

Hence rμ(x0,Ξ0)(K) can be expressed as the expectation

rμ(x0,Ξ0)(K) = Eμ(x0,Ξ0)

[
N∑
j=0

(
j−1∏
i=0

1K′
i
\K(xi)

)
1K(xj)

]
.

Analytical (and computational) evaluation of rμ(x0,Ξ0)(K)
can be separated into two distinct classes of problems. In
the first class of problems we consider the dynamics of the
DTSHS and the set-valued obstacle process to be decoupled.
We assume that the set-valued obstacle process is described
(or can be fairly approximated) by a time-indexed indepen-
dent distribution of random sets. Further, we assume the
control actions (optimal or otherwise) do not depend on the
state of the set-valued obstacle process at each step in time.

It follows (in Section 3.1) that a property of this model class
is the ability to separate the computational burden of the
obstacle process from the computational burden of the DT-
SHS.

In the second class of problems, we consider the dynam-
ics of the DTSHS and the set-valued obstacle process to be
coupled. We assume that the set-valued obstacle process is
modeled as a set-valued Markov process and that the control
policy can depend on both the state of the DTSHS and the
state of the obstacle process. The second class of systems
subsumes the first class of systems, hence a more general
set of models and problems is considered. However, the
approach for the second class of systems (introduced in Sec-
tion 3.2) requires that the state space of the Markov process
be augmented, consequently restricting the size of problems
that can be approximated numerically due to the Curse of
Dimensionality [6]. As a result, it is sometimes necessary
to approximate a coupled system with a decoupled system
(in both the model dynamics and the space of control poli-
cies). While computationally prudent, this approximation
will lead to inferior success rates since the available control
policy cannot make use of the state of the obstacle at each
time step.

In Sections 3.1 and 3.2 we assume that the obstacle pro-
cess can be characterized according to Definition 5. In Sec-
tion 3.1 this results in the ability to computationally eval-
uate the covering functions via Monte Carlo analysis. In
Section 3.2 this results in the ability to augment the state
space of the DTSHS with the parameters of the obstacle
process.

3.1 Decoupled Markov Process
Assume that the set-valued obstacle process is described

(or can be fairly approximated) by a time-indexed indepen-
dent distribution of random sets. It follows that the product
measure of the obstacle process is equal to (or well approxi-
mated by) the product measure of time-indexed independent
stochastic kernels, i.e. for N ∈ N

N−1∏
j=0

Gj(dΞj |Ξj−1) ≈
N−1∏
j=0

Gj(dΞj).

Note that since the initial state of the obstacle Ξ0 is assumed
known, we define G0(dΞ0|Ξ0−1) = G0(dΞ0) = δΞ0 (dΞ0).

For a DTSHS with independent set-valued obstacle pro-
cesses, it can be shown that

rμ(x0,Ξ0)(K) = Eμ(x0,Ξ0)

[
N∑
j=0

(
j−1∏
i=0

1K′
i
\K(xi)

)
1K(xj)

]
,

= Eμx0

[
N∑
j=0

(
j−1∏
i=0

pK′
i
\K(xi)

)
1K(xj)

]
,

where the covering function notation is used liberally for
the simplifying expression pK′

i
\K(xi) = 1X\K(xi)− pΞi(xi)

(sinceK′i\K is not necessarily a random closed set). Clearly,
the covering functions are defined

pΞi(xi) = E [1Ξi(xi)] =
∫
K

1Ξi(xi)Gi(dΞi).

A proof (by Fubini’s Theorem [23]) of the preceding claim
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follows:

rμ(x0,Ξ0)(K) = Eμ(x0,Ξ0)

[
N∑
j=0

(
j−1∏
i=0

1K′
i
\K(xi)

)
1K(xj)

]

=
∫
XN×KN

[
N∑
j=0

(
j−1∏
i=0

(1X\K(xi)− 1Ξi(xi))

)

1K(xj)]
N−1∏
j=0

Qμj (dxj+1|xj)Gj(dΞj)

=
∫
XN

∫
KN

[
N∑
j=0

(
j−1∏
i=0

(1X\K(xi)− 1Ξi(xi))

)

1K(xj)]
N−1∏
j=0

Gj(dΞj)
N−1∏
j=0

Qμj (dxj+1|xj)

=
∫
XN

[
N∑
j=0

(∫
Kj

j−1∏
i=0

(1X\K(xi)− 1Ξi(xi))

j−1∏
i=0

Gi(dΞi)

)
1K(xj)

]
N−1∏
j=0

Qμj (dxj+1|xj)

=
∫
XN

[
N∑
j=0

(
j−1∏
i=0

(1X\K(xi)−

∫
K

1Ξi(xi)Gi(dΞi))
)

1K(xj)
]N−1∏
j=0

Qμj (dxj+1|xj)

=
∫
XN

[
N∑
j=0

(
j−1∏
i=0

pK′
i
\K(xi)

)
1K(xj)

]

N−1∏
j=0

Qμj (dxj+1|xj)

= Eμx0

[
N∑
j=0

(
j−1∏
i=0

pK′
i
\K(xi)

)
1K(xj)

]
.

For a fixed Markov policy μ ∈ Mm, let us define the
functions V μk : X → [0, 1], k = 0, . . . , N as

V μN (x) =1K(x) , (9)
V μk (x) =1K(x)+

pK′
k
\K(x)

∫
XN−k

N∑
j=k+1

(
j−1∏
i=k+1

pK′
i
\K(xi)

)

1K(xj)
N−1∏
j=k+1

Qμj (dxj+1|xj)Qμk(dxk+1|x). (10)

Note that

V μ0 (x0) = Eμx0

[
N∑
j=0

(
j−1∏
i=0

pK′
i
\K(xi)

)
1K(xj)

]

= rμ(x0,Ξ0)(K).

Let F denote the set of functions from X to R and define

the operator H : X ×A×F → R as

H(x, a, Z) :=
∫
X

Z(y)Q(dy|x, a). (11)

The following lemma shows that rμ(x0,Ξ0)(K) can be com-
puted via a backwards recursion.

Lemma 12. Fix a Markov policy μ = (μ0, μ1, ...μN−1) ∈
Mm. The functions V μk : X → [0, 1], k = 0, 1, . . . , N − 1
can be computed by the backward recursion:

V μk (x) = 1K(x) + pK′
k
\K(x)H(x, μk(x), V μk+1), (13)

initialized with V μN (x) = 1K(x), x ∈ X.

proof 14. By induction. First, due to the definition of
(9) and (10), we have that

V μN−1(x) = 1K(x) +

pK′
N−1\K(x)

∫
X

V μN (xN )QμN−1 (dxN |x),

so that (13) is proven for k = N − 1. For k < N − 1 we can
separate the terms associated with xk+1 as follows

V μk (x) = 1K(x) +

pK′
k
\K(x)

∫
X

(
1K(xk+1) + pK′

k+1\K(xk+1)

∫
XN−k−1

N∑
j=k+2

(
j−1∏
i=k+2

pK′
i
\K(xi)

)
1K(xj)

N−1∏
j=k+2

Qμj (dxj+1|xj)Qμk+1 (dxk+2|xk+1)

)

Qμk(dxk+1|x)
= 1K(x) +

pK′
k
\K(x)

∫
X

V μk+1(xk+1)Qμk(dxk+1|x)

which concludes the proof.

Definition 15. Let H be a Markov control process, Ξ =
(Ξk)k∈N0 a random closed set stochastic process, K ∈ B(X),
K′k ∈ B(X), with K ⊆ K′k and K′k = X \ Ξk for all k =
0, 1, 2, . . . , N . A Markov policy μ∗ is a maximal reach-avoid
policy if and only if rμ

∗
(x0,Ξ0)(K) = supμ∈Mm r

μ
(x0,Ξ0)(K), for

all x0 ∈ X.

Theorem 16. Define V ∗k : X → [0, 1], k = 0, 1, ..., N , by
the backward recursion:

V ∗k (x) = sup
a∈A
{1K(x) + pK′

k
\K(x)H(x, a, V ∗k+1)} (17)

initialized with V ∗N (x) = 1K(x), x ∈ X. Then,
V ∗0 (x0) = supμ∈Mm r

μ
(x0,Ξ0)(K), x0 ∈ X and Ξ0 ∈ K. If

μ∗k : X → A, k ∈ [0, N − 1], is such that for all x ∈ X
μ∗k(x) = arg sup

a∈A
{1K(x) + pK′

k
\K(x)H(x, a, V ∗k+1)} (18)

then μ∗ = (μ∗0, μ∗1, ..., μ∗N−1) is a maximal reach-avoid pol-
icy. A sufficient condition for the existence of μ∗ is that
Uk(x, λ) = {a ∈ A|H(x, a, V ∗k+1) ≥ λ} is compact for all
x ∈ X, λ ∈ R, k ∈ [0, N − 1].
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proof 19. For all k = 0, 1, ..., N , the covering function
pΞk , and therefore pK′

k
\K , is a universally measurable func-

tion [18]. Hence, we apply the proof of Theorem 6 in [25]
with pK′

k
\K replacing 1K′\K everywhere.

Note that Theorem 16 gives a sufficient condition for the ex-
istence of an optimal nonrandomized Markov policy. While
the consideration of randomized Markov policies is indeed
interesting in the event that an optimal nonrandomized Mar-
kov policy does not exist, in most cases the “best” policy can
be taken to be nonrandomized [7]. In light of this fact and in
the interest of space, we do not consider randomized Markov
policies in the present work and urge the interested reader
to consider Chapter 8 in [7] for additional details.

3.2 Coupled Markov Process
Assume that the sequence of obstacles is modeled as a set-

valued Markov process. It follows that the product measure
of the obstacle process is equal to the product measure of
the stochastic kernel G, i.e. for N ∈ N the product measure
is

N−1∏
j=0

G(dΞj |Ξj−1).

Note that since the initial state of the obstacle Ξ0 is assumed
known, we define G(dΞ0|Ξ0−1) = δΞ0 (dΞ0).

By Definition 5, we have that an equivalent characteri-
zation of the set-valued Markov process Ξ with transition
kernel G is given by the discrete-time Markov process ξ =
(ξk)k∈N0 with parameter space O and transition probability
function T along with the function γ. Let x̄ ∈ X̄ be the aug-
mented state of the DTSHS, where x̄ =

[
xT , ξT

]T and X̄ =
X×O is the augmented state space of the DTSHS. Further,
let us define the stochastic kernel Q̄ : B(X̄)×X̄×A → [0, 1]:

Q̄(dx̄′|x̄, a) = Q(dx′|x, a)T (dξ′|ξ).
We call the resulting process an augmented DTSHS (ADT-
SHS) H̄.

Definition 20. A Markov Policy for an augmented DT-
SHS, H̄, is a sequence μ = (μ0, μ1, ..., μN−1) of universally
measurable maps μk : X̄ → A, k = 0, 1, ..., N − 1. The set
of all admissible Markov policies is denoted by M̄m.

Hence, the stochastic reach-avoid problem with time-varying
probabilistic obstacles is transformed into a stochastic reach-
avoid problem with deterministic obstacles, and thus can be
solved using the nominal reach-avoid methods in [25].

4. AIRCRAFT PATH PLANNING
Here we consider a discrete-time stochastic hybrid model

of aircraft motion inspired by the work [27]. We model the
aircraft motion as a simple point mass unicycle with three
modes of operation; straight flight, right turn, and left turn.
The discrete-time continuous dynamics of the aircraft are
given by

x1
k+1 = x1

k + tea1
k cos(x3

k) + w1
k (21)

x2
k+1 = x2

k + tea1
k sin(x3

k) + w2
k

x3
k+1 = x3

k + tea2
k + w3

k

where x =
[
x1, x2, x3]T ∈ R

3 are the states of the sys-
tem, a =

[
a1, a2]T ∈ A are the control variables for the

system, w =
[
w1, w2, w3]T ∼ N (0, Σw) is the process

noise of the system, and te is the sampling time accord-
ing to a Euler discretization of the continuous time model
in [27]. In the model,

[
x1, x2]T ∈ R

2 denotes the position
of the aircraft in two dimensions and x3 ∈ [−π, π] denotes
the heading angle of the aircraft. The linear velocity of the
aircraft takes values between the minimum and maximum
aircraft velocity, i.e. a1 ∈ [vmin, vmax], with vmin ∈ R and
vmax ∈ R. The angular velocity of the aircraft takes one
of three possible values, corresponding to the three modes
of operation of the DTSHS, i.e. a2 ∈ {0, −u, u} where
u ∈ R is the angular velocity of the aircraft when in turning
mode. In the following we consider a sampling time of te = 1
minute, aircraft speed a1 = 7.1 km per minute, angular ve-
locity u = 0.3 radians per minute, and disturbance variance
Σw ∈ R

3×3 defined by Σw(1, 1) = 0.25, Σw(2, 2) = 0.25,
Σw(3, 3) = 0.05, and Σw(i, j) = 0 if i �= j. As in [27], the
protected zone of the aircraft is an 8 km cylindrical block
in the state space x that should not intersect the weather
obstacle.

In the following examples, we consider the maximization
and verification of aircraft trajectory safety and success given
a probabilistic hazard forecast. In the first example, we
model the probabilistic obstacles as a sequence of indepen-
dent random closed sets and evaluate the probability of the
aircraft attaining a target region while avoiding the haz-
ardous regions. In the second example, we augment the
state space of the aircraft DTSHS (21) with a parameteri-
zation of the hazardous regions and evaluate the probability
of safety of the aircraft.

In both examples, set-valued obstacle processes are con-
structed according to the forecast product [12], which pro-
vides VIL numbers in a 1 km by 1 km gridded form for the
entire United States over a time horizon of two hours. We
consider a section of airspace centered at latitude 30o and
longitude 86.5o, near the Florida gulf coast, on 01/07/2009,
a day in which storms were observed in the region under
consideration. Evaluating the data from [12] for the location
and time above, we have extracted a thirty minute forecast
comprising centers mk and eccentricities Mk at one minute
increments, i.e. k ∈ {0, . . . , 30}. Figure 5 represents the
deterministic forecast over a thirty minute period. Execu-
tions of the random sets are a function of the deterministic
forecast in both the decoupled and coupled examples. Fig-
ure 6 shows an aircraft path and obstacle location over a
10 minute period for a flight on the same day. While the
aircraft path avoids the deterministic forecast, it intersects
the hazardous region which is shown by the true obstacle
location obtained from the weather data.

4.1 Decoupled Process
Consider the region K̄ = [3600, 3800]× [750, 850]× [−π, π]

with target set K = [3742, 3768] × [752, 778] × [−π, π] and
safe set

K′k = K̄ \ Ξk.

Given forecast data extracted from [12] in the form of ex-
pected centers mk and expected eccentricities Mk, we con-
sider a time-indexed probabilistic model of the ellipse pa-
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Figure 5: Deterministic weather forecast over a thirty
minute period, given at 5 minute increments.

rameters

ξk ∼ N (mk,Σk), (22)

Ck = R(θk)TMkR(θk), (23)

where Σk is a covariance matrix, R(·) is a rotation matrix,
and the angle of rotation θk at time k is a random variable
with uniform distribution over an interval [−α, α]. Σk and α
are defined as in Section 2.3 and the initial parameter values
are ξ0 = [3675, 776]T and θ0 = 0 (see Figure 5). Accounting
for the hazardous weather regions of Section 2.3 and the
protected zone of the aircraft, the random closed set Ξk is
consequently defined

Ξk = E(ξk, Ck)⊕ C(0, 8)× [−π, π]
where C(c, r) is a circle (representing the protected zone of
the aircraft) defined by its center c and radius r and ⊕ de-
notes the Minkowski sum.

Considering the DTSHS for aircraft motion (21) and the
model of probabilistic obstacles, characterized through (22)
and (23), we would like to evaluate (and subsequently maxi-
mize) the probability that an aircraft attains K while avoid-
ing the hazardous regions over a horizon of thirty minutes
(i.e. k ∈ {0, . . . , 30}). All numerical computations were
performed on a 201× 101× 40 grid according to the meth-
ods in [1]. The optimal value function, which represents the
maximum probability of attaining the target region safely at
some point during the time horizon, is shown in Figure 7 for
an initial heading angle of x3

0 = −0.0785 radians. For exam-
ple, the DTSHS initialized at x0 = [3620, 830, −0.0785]T
has a maximum probability of success of 93.3 percent accord-
ing to the optimal value function. An example execution of
the process from x0 = [3620, 830, −0.0785]T is shown in
Figure 8.

4.2 Coupled Process
Here we consider the DTSHS for aircraft motion (21)

and the set-valued Markov process for obstacle (hazardous
weather) movement given in Section 2.3 by the equations
(7) and (8). According to Section 3.2 we augment the state
of the DTSHS with the state of the obstacle such that the

3600 3620 3640 3660 3680 3700 3720

720
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770

780

790

800

810
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x (km)

y 
(k

m
)

actual

forecast

Figure 6: Path of aircraft around the forecasted and
actual weather obstacles for a 5-minute portion of the
flight. Notice that the path avoids the forecasted ellipse
but intersects with the actual storm.

state of the coupled Markov process is

[xT , ξT , θ]T ∈ R
6.

Solving a dynamic program in 6 dimensions is intractable
due to the Curse of Dimensionality. We therefore make the
following modifications. We assume that θk = 0 and Mk =
M for all k, thereby removing θ as a state. Additionally, we
form a new state corresponding to the relative coordinate of
the aircraft and obstacle location

[x1, x2]T − ξ ∈ R
2

and remove the states x1, x2, ξ1, and ξ2. The resulting state
of the coupled process is

x̄ =

[
x1 − ξ1
x2 − ξ2
x3

]
=

[
x̄1

x̄2

x̄3

]
.

Combining equations (21) and (7), the process dynamics of
the augmented system are given by the difference equations

x̄1
k+1 = x̄1

k + tea1
k cos(x̄3

k) + w1
k − μ1

k − η1
k (24)

x̄2
k+1 = x̄2

k + tea1
k sin(x̄3

k) + w2
k − μ2

k − η2
k

x̄3
k+1 = x̄3

k + tea2
k + w3

k.

By defining an augmented system for the coupled process,
which combines the dynamics of the DTSHS and the dy-
namics of the random obstacle process, we can now de-
fine a reach-avoid problem in the spirit of [25]. Consider
K̄1 = R×R×[−π, π] and K̄2 = [−69, 89]×[−24, 40]×[−π, π].
We define the target region K = K̄1 \ K̄2 and the safe set
K′ = K̄1\Ξ, where the obstacle set Ξ is static, deterministic,
and defined

Ξ = E(0,M)⊕ C(0, 8)× [−π, π]
where C(c, r) is a circle (representing the protected zone of
the aircraft) defined by its center c and radius r and ⊕ de-
notes the Minkowski sum.

Considering the ADTSHS (24), we would like to evaluate
(and subsequently maximize) the probability that an aircraft
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Figure 7: Optimal value function for the aircraft
path planning problem with decoupled Markov processes
(with initial heading angle x̄3

0 = −0.0785).

attains K (i.e. the aircraft escapes a region of the airspace
that is considered too close to the hazardous weather re-
gion) while avoiding the hazardous region Ξ over a horizon
of thirty minutes (i.e. k ∈ {0, . . . , 30}). All numerical com-
putations were performed on a 161× 67× 20 grid according
to the methods in [1]. The optimal value function, which
represents the maximum probability of attaining the tar-
get region safely at some point during the time horizon,
is shown in Figure 9 for an initial aircraft heading angle
of x̄3

0 = −0.1571 radians (note that the value function is
shown as 1 − V ∗0 ). For example, the DTSHS initialized at
x̄0 = [−60, −10, −0.1571]T has a maximum probability of
success of 83.08 percent according to the optimal value func-
tion. The V ∗0 = 0.95 level set of the optimal value function
is shown in Figure 10. Note that all initial conditions which
start outside the level set have a success probability greater
than 95 percent.

5. CONCLUSION
Extending the methods of [2, 25] and integrating the the-

ory of random closed sets [18, 21], we formulated a reach-
avoid problem with random obstacles as a finite horizon
stochastic optimal control problem. We considered two pos-
sibilities for the random set-valued obstacle process. In the
first, we considered the random set process to be an inde-
pendent stochastic process, and thus decoupled from the
evolution of the DTSHS. In the second case, we considered
the obstacle process as a set-valued Markov process, equiva-
lently expressed through parameterization. In both cases, it
was shown that dynamic programming can be used to com-
pute the Markov control policy that maximizes or minimizes
the cost of the optimal control problem. A numerical exam-
ple motivated by aircraft motion planning under uncertain
weather predictions was used to illustrate the effectiveness
of the methods introduced.
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